One-dimensional Lieb–Oxford bounds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Leaves of One-dimensional Foliations

Let X be a variety over an algebraically closed field, η : Ω X → Ļ a onedimensional singular foliation, and C ⊆ X a projective leaf of η. We prove that 2pa(C)−2 = deg(Ļ|C)+λ(C)−deg(C∩S) where pa(C) is the arithmetic genus, where λ(C) is the colength in the dualizing sheaf of the subsheaf generated by the Kähler differentials, and where S is the singular locus of η. We bound λ(C) and deg(C ∩ S),...

متن کامل

Dynamical Upper Bounds for One-dimensional Quasicrystals

Following the Killip-Kiselev-Last method, we prove quantum dynamical upper bounds for discrete one-dimensional Schrödinger operators with Sturmian potentials. These bounds hold for sufficiently large coupling, almost every rotation number, and every phase.

متن کامل

Lower Transport Bounds for One-dimensional Continuum Schrödinger Operators

We prove quantum dynamical lower bounds for one-dimensional continuum Schrödinger operators that possess critical energies for which there is slow growth of transfer matrix norms and a large class of compactly supported initial states. This general result is applied to a number of models, including the Bernoulli-Anderson model with a constant single-site potential.

متن کامل

Bounds for One-dimensional Cellular Automata: A Linear Algebraic Approach

In [CK05], E. Czeizler and J. Kari used a linear algebraic tool to obtain good upper bounds for the length of the inverse neighbourhood of reversible one-dimensional cellular automata (CA). Recently, a linear algebraic approach similar to the one used by J. Kari in [Kar03], lead to better upper bounds for the length of the shortest unbalanced words, shortest orphans and shortest diamonds of non...

متن کامل

One-dimensional relaxations and LP bounds for orthogonal packing

We consider the feasibility problem in d-dimensional orthogonal packing (d ≥ 2), called Orthogonal Packing Problem (OPP): given a set of ddimensional rectangular items, decide whether all of them can be orthogonally packed in the given rectangular container without item rotation. We review two kinds of 1D relaxations of OPP. The first kind is non-preemptive cumulative-resource scheduling, equiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2020

ISSN: 0021-9606,1089-7690

DOI: 10.1063/5.0009419